首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   10篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2018年   4篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
Among the difficulties that influence future dam operations,reservoir sedimentation is the most problematic for engineers.This study predicted the amount and pattern of sedimentation for use in estimation of the useful lifespan of reservoirs and identification of optimal locations for outlets and intakes at the initial stages of dam design.Hydrographic surveys of different dams can provide better insight into this phenomenon.Latian Dam in Iran has conducted hydrographic surveys during 7 time periods.The amount and process of sedimentation in this reservoir were determined,and predictions of distribution of sediments were validated by well-known,common methods.The formation of a delta in the reservoir was investigated for different time periods after operation.Future problems due to the impacts of sedimentation on dam operation and the useful lifespan of the reservoir were predicted.In addition,the study results may be used for developing empirical methods to predict sedimentation patterns in other reservoirs.  相似文献   
3.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   
4.
Most of the known large gold deposits in Iran are located along the Sanandaj–Sirjan Zone, western Iran, which hosts a wide range of gold deposit types. Gold deposits in the belt, hosted in upper Paleozoic to upper Mesozoic volcano‐sedimentary sequences of lower greenschist to lower amphibolite metamorphic grade, appear to represent mainly orogenic and intrusion‐related gold deposit types. The largest resource occurs at Muteh, with smaller deposits/occurrences at Zartorosht, Qolqoleh, Kervian, Qabaqloujeh, Kharapeh, and Astaneh. Although a major part of the gold deposits in the Sanandaj–Sirjan Zone are related to metamorphic devolatilization, some deposits including Muteh and Astaneh are related to short‐lived disruptions in an extensional tectonic regime and are associated with magma generation and emplacement. The age of gold ore formation in the orogenic gold deposits is Late Cretaceous to Tertiary, reflecting peak‐metamorphism during regional Cretaceous–Paleocene convergence and compression. The Oligocene to Pliocene age of most intrusion‐related gold systems is consistent with the young structural setting of the gold ore bodies; these deposits are sequestered along normal faults, correlated with Middle to Late Tertiary extensional tectonic events. This relationship is comparable to the magmatic‐metallogenetic evolution of the Urumieh‐Dokhtar magmatic arc, where the number of different types of gold‐copper deposits and the magnitude of the larger ones followed development of a magmatic arc. The appropriate explanation may be related to two different stages of gold mineralization consisting of a first compressional phase during the Late Cretaceous to Early‐Middle Tertiary, which is related to orogenic gold mineralization in the Qolqoleh, Kervian, Qabaqloujeh, Kharapeh, and Zartorosht deposits, and the extensional phase during the Eocene to Pliocene that is recognized by young intrusion‐related gold mineralization in the Muteh and Astaneh deposits.  相似文献   
5.
Built on the framework of effective interaction potentials using lattice element method, a methodology to calibrate and to validate the elasticity of solid constituents in heterogeneous porous media from experimentally measured nanoindentation moduli and imported scans from advanced imaging techniques is presented. Applied to computed tomography (CT) scans of two organic-rich shales, spatial variations of effective interaction potentials prove instrumental in capturing the effective elastic behavior of highly heterogeneous materials via the first two cumulants of experimentally measured distributions of nanoindentation moduli. After calibration and validation steps while implicitly accounting for mesoscale texture effects via CT scans, Biot poroelastic coefficients are simulated. Analysis of stress percolation suggests contrasting pathways for load transmission, a reflection of microtextural differences in the studied cases. This methodology to calibrate elastic energy content of real materials from advanced imaging techniques and experimental measurements paves the way to study other phenomena such as wave propagation and fracture while providing a platform to fine-tune effective behavior of materials given advancements in additive manufacturing and machine learning algorithms.  相似文献   
6.
The Mononobe–Okabe (M–O) method developed in the 1920s in Japan continues to be widely used despite many criticisms and its limitations. The method was developed for gravity walls retaining cohesionless backfill materials. In design applications, however, the M–O method, or any of its derivatives, is commonly used for below ground building walls. In this regard, the M–O method is one of the most abused methods in the geotechnical practice. Recognizing the limitation of the M–O method, a simplified method was recently developed to predict lateral seismic soil pressure for building walls. The method is focused on the building walls rather than retaining walls and specifically considers the dynamic soil properties and frequency content of the design motion in its formulation.  相似文献   
7.
Natural Hazards - Several studies have been conducted on droughts, precipitation, and temperature, whereas none have addressed the underlying relationship between nonlinear dynamic properties and...  相似文献   
8.
Groundwater is the main water source used for drinking and cooking purposes globally. Nitrate level in most groundwater resources in arid and semi-arid areas has increased in the past several decades as a result of human activities and natural processes. This may exert a great impact on human health. To learn the contamination circumstances of groundwater nitrate in villages of Azadshahr, Iran and assess its probable risk to the health of adults, children and infants, fifty-eight groundwater samples were collected from wells and springs in 2018. Nitrate concentrations had a wide spatial variability in wells and springs of the studied villages, with values going from 1 up to 51 mg/L. Exceedances of the EPA standard value were limited to two village springs (villages Nili and Narab, with nitrate level of 51 and 46 mg/L, respectively). The hazard quotients (HQ) values for 41% of children and infants were above the safety level (i.e., HQ?>?1), suggesting that groundwater nitrate would have significant health effects on these age groups. Therefore, appropriate control measures and sanitation improvement programs should be put in place to protect the health of the residents in the contaminated villages.  相似文献   
9.
Large-scale atmospheric circulations associated with 133 moderate to heavy cold-weather precipitation events recorded at Mehrabad station in Tehran, Iran, during the period 1951–2013 are analysed. To this end, the performance of un-rotated, orthogonally rotated and obliquely rotated solutions of T-mode principal component analysis (PCA) is examined in classifying the atmospheric circulations into a few representative circulation types (CTs). The T-mode PCAs were applied to the 500-hPa geopotential height for the events in a domain from 10°E to 70°E and from 20°N to 50°N. The first six leading principal components were retained and then orthogonally and obliquely rotated using varimax and promax solutions, respectively. Statistical inter-comparison of the CTs obtained using the three solutions suggests that the obliquely rotated solution is the better choice for circulation classification in the present study. The six CTs obtained using the oblique rotation were then linked to the daily total precipitation and daily mean temperature variability at Tehran station as well as to the standardized anomalies of the daily total precipitation and mean daily temperature of a dense network of stations distributed across Iran. It is found that the CTs identified, though generally comparable in producing significant precipitation in Tehran, vary in their potential to bring cold weather and generate snowfall in Tehran specifically and in the country in general. While the first three CTs give rise to regional patterns of standardized precipitation anomalies centred in Tehran, the next three CTs leave a pronounced precipitation signature almost across the whole country. As regards the standardized temperature anomalies, with the exception of one CT that causes deep and widespread negative standardized anomalies over most parts of the country, the other CTs are characterized with a dipolar structure of a deep intrusion of cold weather to the west and prevailing warm weather to the east of the country.  相似文献   
10.
Natural Resources Research - Drilling and blasting operations are one of the most effective techniques for rock removal in mines. However, these operations are associated with some environmental...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号